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SUMMARY

The aim of the present work is to introduce a formulation for the numerical analysis of three-dimensional
thermochemical non-equilibrium hypersonic �ows, using the �nite element method and the Taylor–
Galerkin scheme and adopting Park’s 2-temperature, 5-species (N2, O2, NO, N and O) and 17-reaction
model. Examples using Euler and Navier–Stokes equations are included and compared with experimental
and numerical works presented by other authors. The results are close to those analysed by other
researches and a good computational performance was obtained. Copyright ? 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Reentering the Earth’s atmosphere is a phenomenon that has challenged researchers over the
last few decades. Owing to the growth of space exploration and the increasing number of
space trips, great interest in dominating launch, orbit and recovery of space vehicles has been
created, primarily to bring back people and experiments safely to Earth.
Since the beginning of the Space Age, marked by the Sputnik launch in 4th October

1957, great interest in operating recoverable space vehicles is being created by researchers
and scientists. The recovery of a space vehicle is a very complex procedure, including its
reentry into the Earth’s atmosphere at large speeds, usually reaching the hypersonic regime
(Mach¿5). For an orbital vehicle, reentry starts at Mach=25 approximately (around 8km=s),
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and for a vehicle returning from the Moon, as performed by Apollo, reentry starts at Mach=36
approximately (around 11 km=s). Owing to these high speeds, extremely high temperatures
are generated around the vehicle, which may cause vibrational excitation, dissociation and
ionization of the molecules. Therefore, the perfect gas hypothesis is no longer valid for air
at those regimes and one must include high temperature e�ects in the mathematical model to
properly analyse hypersonic �ows.
For high temperature analysis, knowledge of thermodynamic gas properties is needed. Some

of those properties cannot be obtained from classic thermodynamics. On the other hand,
statistic thermodynamics allows scientists to obtain those properties from basic principles. For
a simple diatomic molecule (‘dumbbell’ model), the internal energy can be split into four
modes: translational, rotational, vibrational and electronic [1]. Above speci�c temperatures
(around 800 K for air at 1 atm), the molecules become vibrationally excited and the energy
modes could be represented by more than one single temperature (thermal non-equilibrium).
For high-temperature hypersonic �ows with chemical reactions, the vibrational temperature

is very important, because it controls the molecular dissociation rate [2]. Park [3] suggests
that without taking into account the vibrational temperature, there is a little chance that a CFD
analysis be able to reproduce the experimentally observed phenomena. Lee [4] presented a
basic formulation for �ight analysis of aeroassisted orbital transfer vehicles (AOTV), which
includes three energy conservation equations: total, vibrational and electronic. Park [5] intro-
duced a simpler version, with only two energy conservation equations (total and vibrational),
where vibrational and electronic temperature, Tv, are considered to be in equilibrium, but
independent of the translational-rotational temperature, T .
Supersonic �ow around a blunt body were �rst solved numerically by Moretti and

Abbett [6]. They employed a time-marching �nite di�erence technique, developed by Lax
and Wendro� [7–9], applied to the transient Euler equations. Computer codes including phys-
ical phenomena present in hypersonic �ows appeared in the early 1970s [10]. In the context
of the �nite element method (FEM), Donea [11] developed a time-marching procedure, the
Taylor–Galerkin scheme, which is considered the equivalent of Lax–Wendro� method for FEM
[12, 13]. Argyris et al. [14–17] applied the Taylor–Galerkin scheme to analyse the reentry
of the European space vehicle, Hermes, into the Earth’s atmosphere. They used a hypersonic
mathematical model with chemical reactions and thermal equilibrium (one temperature).
The aim of the present work is to introduce a procedure to solve thermochemical non-

equilibrium hypersonic �ows using the Taylor–Galerkin scheme and Park’s two-temperature
model. Ionization is neglected, and only �ve chemical species are considered (N2, O2, NO, N
and O). Three examples are presented: the hypersonic �ow of partially dissociated nitrogen
over a cylinder, the hypersonic �ow over an half-ellipse and the di�usive hypersonic �ow
over an half-sphere.

2. THE MATHEMATICAL MODEL

2.1. Governing equations

A formulation for non-di�usive thermochemical non-equilibrium hypersonic �ows is presented.
Einstein notation is used, so summation along repeated indexes occur unless otherwise indi-
cated. Subscript s refers to the species. Five di�erent types of conservation equations are
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applied: mass of the mixture, mass for each species, momentum, vibrational and total ener-
gies. They are gathered in a compact form, as follows:

@U
@t
+
@Fj
@xj

+
@Gj
@xj

+H =0 in � (1)

where

U=




�

�s

�ui

�ev

�e
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�suj
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�evuj

(�e+ p)uj
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−�ji

−qv; j − hv; s Js; j

−qj − hs Js; j − uj
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k=1
�jk




H=




0

−!s
0

−!v
0




(2)

where � is the speci�c mass of the mixture, �s is the speci�c mass of the species s, ui is the
velocity component in xi direction, �ij is the Kronecker delta, hv; s and hs are the vibrational
and total enthalpy of species s, respectively, Js; j is the mass �ux vector, �ij is the stress tensor,
qv; j and qj are the vibrational and total heat �ux vectors, respectively, !s and !v are the mass
and vibrational=electronic energy sources, respectively, and � is the domain. The pressure p
is obtained from Dalton’s law of partial pressures, as follows:

p=
Ns∑
s=1
ps=

Ns∑
s=1
�sRsT (3)

where ps and Rs are the partial pressure and the gas constant for species s, respectively, T
is the translational temperature and Ns is the number of species. The vibrational energy, ev,
and the total energy, e, are de�ned by

ev=csev; s

e= 1
2 ujuj + cs(et; s + ev; s + e0; s)

(4)

with

et; s=

{
3
2 RsT; s=atom
5
2 RsT; s=molecule

(5)
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Table I. Data for the �ve species.

N2 O2 NO N O

Ms (kg=kgmol) 28.02 32.00 30.01 14.01 16.00
Rs (J=kgK) 296.7 259.8 277.04 593.6 519.6
e0; s (J=kg) 0 0 2:99× 106 33:59× 106 15:42× 106
�v; s (K) 3393 2270 2740 — —
�e; s (K) — 11390 174 — 228
Gs 0 0.6667 1 0 0.6
�s ( �A) 3.798 3.467 3.492 3.298 3.050
T�; s (K) 71.4 106.7 116.7 71.4 106.7

ev; s=



0; s=atom

Rs�v; s
exp(�v; s=Tv)− 1 ; s=molecule

(6)

where cs is the mass fraction, Tv is the vibrational temperature, et; s and ev; s are the translational
and vibrational internal energies, respectively, e0; s is the formation energy and �v; s is the
vibrational characteristic temperature. The data for each of the �ve species are given in Table I.

Boundary conditions must be applied to velocities components ui, speci�c mass of the
mixture �, speci�c mass of the species s, �s, translational temperature, T , and vibrational
temperature, Tv, in the parts �u, ��, ��s , �T and �Tv , respectively, of the total boundary �.
Initial conditions must also be given for the unknown variables in the domain �.

2.2. Di�usion coe�cients

The di�usion coe�cients are given by

Js; j = �Ds
@ys
@xj

(no summation on s) (7)

�ij = �
(
@ui
@xj

+
@uj
@xi

)
+ �

@uk
@xk

�ij (8)

qv; j = 	v
@Tv
@xj
; qj= 	

@T
@xj

+ 	v
@Tv
@xj

(9)

where ys is the mole fraction of species s, Ds is the e�ective di�usion coe�cient for species s,
� is the mixture viscosity, � is the volumetric viscosity (�= − 2�=3 when Stokes’ hypothesis
is assumed), T and Tv are the translational and the vibrational temperatures, respectively,
	v and 	 are the vibrational and total thermal conductivity coe�cients, respectively. These
coe�cients are given by statistic thermodynamics, as follows [18]:

Ds=

2totMs(1−Ms
s)∑Ns

r = 1
r �= s
(
s=Dsr)

(no summation on s) (10)
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Dsr =1:8583× 10−7
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(no summation on s) (11)
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(19)

	(1)
sr (T ) =

8
3

[
2MsMr

� 
RT (Ms +Mr)

]1=2
��sr (no summation on s or r) (20)

	(2)
sr (T ) =

16
5

[
2MsMr

� 
RT (Ms +Mr)

]1=2
��s (no summation on s or r) (21)

asr =1+
(1−Ms=Mr)(0:45− 2:54Ms=Ms)

(1 +Ms=Ms)2
(22)

where Ns is the number of species, Ms and Mr are the molecular weight of species s and r,
respectively, 
s is the molar concentration of species s (
s=�s=Ms), 
tot is the total molar con-
centration, �sr =0:5 (�s+�r), where �s and �r are the e�ective cross-section of species s and
r, respectively, �sr and �s are the collision integrals for species s, 	

(1)
sr and 	

(2)
sr are the modi-

�ed collision integrals for species s, k is the Boltzmann’s constant (k=1:380622× 10−23 J=K)
and 
R is the universal gas constant ( 
R=8314:3 J=kg−molK). Tsr =

√
T�; sT�; r , where T�; s and

T�; r are the e�ective temperatures for species s and r respectively, given in Table I. �r =�s
for species r.
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2.3. Source terms

The vibrational=electronic energy source is given by [19]

!v =�s
ev; s(T )− ev; s(Tv)

�s
+ [ev; s(Tv) + ee; s(Tv)]!s (23)

where

�s =
(
Ns∑
r=1

yr
�sr

)−1
(24)

�sr =
exp[Asr(T−1=3 − 0:015B1=4sr )− 18:42]

p
(25)

Asr =1:16× 10−3B0:5sr �4=3v; s ; Bsr =
MsMr

Ms +Mr
(26)

with ys being the molar fraction. The pressure, p, in Equation (25) must be inserted in
atmospheres to obtain relaxation time in seconds.
The mass rate of production of species s is given by [19]

!s=Ms

Nr∑
r=1
(bs; r − fs; r)(Rf ; r − Rb; r) (no summation on s) (27)

where Nr is the number of reactions, fs; r and bs; r are, respectively, the stoichiometric coe�-
cients for reactants and products in the r reaction, Rf ; r and Rb; r are, respectively, the forward
and backward reaction rates for r reaction. These rates are de�ned by

Rf ; r = kf ; r
Ns∏
s=1

(
�s
Ms

)fs; r
; Rb; r = kb; r

Ns∏
s=1

(
�s
Ms

)bs; r
(28)

where kf ; r and kb; r are the forward and backward reaction rate coe�cients, respectively,
given by

kf ; r=Cf ; rT
nf ; r
x exp(−Td=Tx)

kb; r=
kf ; r
Keq; r

(no summation on s)

Keq; r=exp(B1; r + B2; r ln Z + B3; rZ + B4; rZ2 + B5; rZ3)

(29)

where

Z =
104

T
(30)

The parameters Cf ; r , nf ; r , Td, Tx, B1; r , B2; r , B3; r , B4; r and B5; r , are those de�ned by Park [20].
The dissociation reactions are controlled by a combination of the two temperatures, as pro-
posed by Park [20], as follows:

Ta=
√
TTv (31)
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3. THE FINITE ELEMENT TAYLOR–GALERKIN SCHEME

3.1. Time discretization: Taylor series

In Taylor–Galerkin scheme, the variables are expanded in time according to a Taylor series,
as follows [21]:

Un+1 =Un +	t
(
@U
@t

)n+s1
+
	t2

2

(
@2U
@t2

)n+s2
+ O(	t3) (32)

where the superscript identi�es the time step. Thus, one can obtain the results in time step
n + 1 with information from the previous step, n. In addition, the following de�nitions are
given:
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; 06s161
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@t2
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@2Un+1

@t2
; 06s261

(33)

Adopting s1 = s2 = 1=2 and substituting in (32), one obtains
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+
1
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)
+
	t2

2

(
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@t2
+
1
2
@2	Un+1

@t2

)
+ · · · (34)

where 	Un+1 =Un+1 −Un. From Equation (1), the time derivative for Un is de�ned as
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= − @Fnj
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− @Gnj
@xj

−Hn (35a)

Similarly, the time derivative for 	Un+1 is de�ned as

@	Un+1

@t
= − @	Fn+1j

@xj
− @	Gn+1j

@xj
−	Hn+1 (35b)

Deriving Equation (35a) with respect to t, it is obtained
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=
@
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[
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(
−@F

n
k
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Similarly, the second derivative of 	Un+1 is given by
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(
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Substituting Equations (35a), (35b), (36a) and (36b) in Equation (34), neglecting all terms
larger in order than second order and introducing an iteration counter, I , for the incremental
terms, the following expression is obtained:

	Un+1
I+1 =	t

[
−@F

n
j

@xj
− @Gnj
@xj

−Hn +
	t
2

@
@xj

(
unj
@Fnk
@xk

)]

+
	t
2

[
−@	F

n+1
jI

@xj
− @	Gn+1jI

@xj
+
	t
2

@
@xj

(
unj
@	Fn+1kI

@xk

)]
(36)

where i; j; k=1; 2; 3 and

	Fn+1i =Fn+1i − Fni ; 	Gn+1i =Gn+1i −Gni (37)

3.2. Spatial discretization: Galerkin weighted residual method

Applying the classical Bubnov–Galerkin technique to expression (36) in the context of the
�nite element method, the following matrix equations are obtained:

(a) Conservation of mass of mixture:

{	�}n+1I+1 =	t[ML]−1
{
−[BC]i{F�i }n +

	t
2
{f}n

}
+
	t
2
[ML]−1{−[BC]i{	F�i }n+1I } (38)

(b) Conservation of mass of each species:

{	�s}n+1I+1 =	t[ML]−1
{
−[BC]i{Fsi }n − [Ks]{ys}n + [M ]{!s}n +

	t
2
{f}n + {gs}n

}

+
	t
2
[ML]−1{−[BC]i{	F�i }n+1I − [Ks]{	ys}n+1I } (39)

(c) Momentum conservation:

{	�uj}n+1I+1 =	t[ML]−1
{
−[BC]i{Fuij}n − [D]ij{uj}n +

	t
2
{f}n + {gu}n

}

+
	t
2
[ML]−1{−[BC]i{	F�i }n+1I − [D]ij{	ui}n+1I } (40)

(d) Vibrational energy conservation:

{	�ev}n+1I+1 =	t[ML]−1{−[BC]i{Fvi }n − [Kv]{Tv}n

− [Ksv]{ys}n − [M ]{!v}n + 	t2 {f}n + {gv}n}

+
	t
2
[ML]−1{−[BC]i{	Fei }n+1I − [Kv]{	Tv}n+1I − [Ksv]{	ys}n+1I } (41)
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(e) Total energy conservation:

{	�e}n+1I+1 =	t[ML]−1{−[BC]i{Fei }n − [E]i{ui}n − [Kv]{Tv}n − [Ke]{T}n − [Kse]{ys}n

+
	t
2
{f}n + {ge}n}+ 	t

2
[ML]−1{−[BC]i{	Fei }n+1I

− [Kv]{	Tv}n+1I − [Ke]{	T}n+1I − [Kse]{	ys}n+1I } (42)

where

[M ] =
∫
�e
[�]T[�] d� (43)

[ML] =

{
�e=8 for main diagonal elements

0 for all o�-diagonal elements
(44)
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�
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�e
�
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d�

+
∫
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�
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@xj
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@xi
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∫
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[
�([�]{ui}n)@[�]

T

@xk
@[�]
@xk

+ �([�]{uk}n)@[�]
T
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@[�]
@xk
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T
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@[�]
@xi

]
d� (47)

[Kv] =
∫
�e
	v
@[�]T
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∫
�e
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@xi
@[�]
@xi

d� (49)

[Ks] =
∫
�e
Ds([�]{�}n)@[�]
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Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1355–1376



1364 M. P. KESSLER AND A. M. AWRUCH

[Ksv] =
∫
�e
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T
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)
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∫
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�
(
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@xi
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)
+ �

(
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@xk

{uk}n
)
�ij

]
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{gv}n =
∫
�e
[�∗]T

[
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(
@[�]
@xi

{Tv}
)
+ hv; sDs([�]{�}n)

(
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{ge}n =
∫
�e
[�∗]T

{
	v

(
@[�]
@xi

{Tv}
)
+ 	

(
@[�]
@xi

{T}
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+ hsDs([�]{�}n)
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+ �

(
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@xk
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]}
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In these expressions, �e and �e are the element volume and the boundary surface, respectively,
[�] is the vector containing the shape functions for each node, [�∗] is the vector containing
the shape functions evaluated on the contour surface and [ML] is the lumped mass matrix.
After assembling Equations (38)–(42) and applying the corresponding boundary conditions,

the nodal values of �, �s, �uj, �ev and �e can be computed at each time level by using an
iterative scheme. Nodal values of thermodynamic pressure are calculated with the equation of
state, Equation (3).
The Courant–Friedrichs–Lewy (CFL) stability condition for each element is given by

	te=�
Le

a+
√
uiui

(58)

where Le is a characteristic dimension for the element, a is the speed of sound and � is a
safety coe�cient (in this work, �=0:3 was adopted). Equations (39)–(43) were applied with
a uniform value of 	t on the whole �nite element mesh. The smallest value of 	te obtained
by applying the above equation to all elements was adopted.
To capture strong discontinuities and eliminate high-frequency oscillations near shock waves,

an arti�cial viscosity is used. The smoothed solution is obtained from the non-smoothed so-
lution by applying the following expression:

{Us}n+1 = {U}n+1 + [ML]−1{D}n (59)
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Figure 1. Physical and computational spaces for the eight-node hexahedral isoparametric element.

where the arti�cial damping vector is given by

{D}n=
∑

CeCadSe([M ]− [ML])e{U}n (60)

In the above equation, Ce=	t=	te is the local Courant number, Cad is an arti�cial damping
coe�cient given by the user (in this work, Cad = 2:0 for non-viscous �uids and Cad = 1:0 for
viscous �uids), and Se is a pressure sensor at element level obtained as an average of nodal
values SN . Values of SN are components of the following assembled global vector:

{S}n=
∑

e |([M ]− [ML])e{p}ne |∑
e|([M ]− [ML])e|{p}ne

(61)

where the bars indicate that absolute values of the corresponding terms must be taken. This
approach was previously used by Argyris et al. [15].

3.3. Analytical evaluation of element matrices

In this work, the eight-node hexahedral isoparametric element has been used. In Figure 1 the
element is shown in its physical and computational spaces.
The shape functions for each node are given by

�N = 1
8[1 + 1N1][1 + 2N2][1 + 3N3]; N =1; 2; : : : ; 8 (62)

where iN are the natural co-ordinates of node N .
The shape function derivatives with respect to the global co-ordinates xi are given by

@[�]
@xj

= J−1ij
@[�]
@i

(63)
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where J−1ij are the components of the inverse of the Jacobian matrix J , which can be written as

J (1; 2; 3)=



J11 J12 J13

J21 J22 J23

J31 J32 J33


 =




@[�]
@1

{x1} @[�]
@1

{x2} @[�]
@1

{x3}

@[�]
@2

{x1} @[�]
@2

{x2} @[�]
@2

{x3}

@[�]
@3

{x1} @[�]
@3

{x2} @[�]
@3

{x3}




(64)

where {xi} are the vectors containing the global co-ordinates of the eight nodes of the element.
The di�erential volume is d�= |J |d1 d2 d3, where |J | is the determinant of the Jacobian

matrix J .
Using Equations (62)–(64) in Equations (43)–(57), evaluating the inverse and the deter-

minant of the Jacobian matrix at the element centre (where 1 = 2 = 3 = 0), and solving the
integrals given in Equations (43)–(57), the following analytical expressions are obtained for
the element matrices:

MMN =
�e
64

(
1 +

1
3
1M1N

)(
1 +

1
3
2M2N

)(
1 +

1
3
3M3N

)
(65)

MLMN =
�e
8
�MN (66)

BiMN =
1
8

[

J i1(0)1N

(
1 +

1
3
2M2N

)(
1 +

1
3
3M3N

)

+ 
J i2(0)2N

(
1 +

1
3
1M1N

)(
1 +

1
3
3M3N

)

+ 
J i3(0)3N

(
1 +

1
3
1M1N

)(
1 +

1
3
2M2N

)]
(67)

where the components of the matrix 
J (0) are given by


J (0)=



[J22J33 − J23J32](0) [J13J32 − J12J33](0) [J12J23 − J13J22](0)
[J23J31 − J21J31](0) [J11J33 − J13J31](0) [J31J21 − J11J23](0)
[J21J32 − J22J31](0) [J12J31 − J11J32](0) [J11J22 − J12J21](0)


 (68)

Thus, from Equation (46), the following expression can be obtained:

CiMN =
(
1
8

8∑
M=1

unkM

)
1
�e
akiMN (69)

where

akiMN = 
J kj(0) 
J ih(0)AjhMN (70)
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with the factor AjhMN being de�ned as follows:

AijMN =




iMjN

(
1 +

1
3
kMkN

)
if i �= j and



if i=1 and j=2→ k=3
if i=2 and j=3→ k=1
if i=3 and j=1→ k=2

iMjN

(
1 +

1
3
kMkN

)

×
(
1 +

1
3
hMhN

)
if i= j and



if i= j=1→ k=2 and h=3
if i= j=2→ k=1 and h=3
if i= j=3→ k=1 and h=2

(71)

Thus, the di�usion matrix becomes

DijMN =
1
�e
[�aijMN + �ajiMN ] if i �= j

DiiMN =
1
�e
[(2�+ �)aiiMN + �akkMN ] if i= j and



if i=1→ k=2; 3
if i=2→ k=1; 3
if i=3→ k=1; 2

(72)

EiMN =
1
�e

[
�
(
1
8

8∑
M=1

uiM

)
aiiMN + �

(
1
8

8∑
M=1

ujM

)
aijMN + �

(
1
8

8∑
M=1

ujM

)
ajiMN

]
(73)

and

KMN =
1
�e
KaiiMN (74)

In expressions (65)–(74), M and N are nodal indexes and M;N =1; 2; : : : ; 8, whereas i; j; k; h=
1; 2; 3.
To simplify the analytical solution of the boundary integrals at the element level of Equa-

tions (53)–(57), average values of element actions are considered on the corresponding bound-
ary element faces, and these actions are assumed to be uniformly distributed on the four nodes
belonging to each boundary face. With this simpli�cation, the following equivalent vectors
due to boundary actions are obtained:

{f}n = 1
4
(unk |0nk)

(
1
8

8∑
N=1

kN J−1ik F
n
iN

)
{�}

∫
�e
d� (75)

{gs}n = 1
4
Ds(�n|0nk)

(
1
8

8∑
N=1

kN J−1ik y
n
N

)
{�}

∫
�e
d� (76)

{guj}n =
1
4
�nij|0 ni{�}

∫
�e
d� (77)

{gv}n = 1
4

[
	v

(
1
8

8∑
N=1

kN J−1ik T
n
vN

)
ni + hv; sDs(�n|0nk)

(
1
8

8∑
N=1

kN J−1ik y
n
N

)]
{�}

∫
�e
d�

(78)
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{ge}n = 1
4
unj |0�nij|0ni{�}

∫
�e
d� +

1
4

[
	v

(
1
8

8∑
N=1

kN J−1ik T
n
vN

)
ni

+ 	
(
1
8

8∑
N=1

kN J−1ik T
n
N

)
ni + hsDs(�n|0nk

(
1
8

8∑
N=1

kN J−1ik y
n
N

)]
{�}

∫
�e
d� (79)

where

�n|0 = 18
8∑

N=1
�nN (80)

unj |0 =
1
8

8∑
N=1

unjN (81)

�nij|0 =
�
8

(
8∑

N=1
kN J−1ik u

n
jN +

8∑
N=1

kN J−1jk u
n
iN

)
+
�
8

(
8∑

N=1
kN J−1lk u

n
lN

)
(82)

are the average values of the density, velocity and viscous shear stresses on the boundary
element, respectively. Finally,

�N =
{
1 if N is a boundary node
0 if N is not a boundary node (83)

4. NUMERICAL RESULTS

4.1. Nitrogen �ow over an half-cylinder

The non-di�usive hypersonic �ow of nitrogen partially dissociated over a half-cylinder with
25:4mm radius is analysed, which can be schematically seen in Figure 2. The free �ow condi-
tions are Mach=6:13, temperature=1833K, velocity =5590m=s, density =5:349× 10−3 kg=m3
and atomic nitrogen mass fraction=0:073. This problem was analysed experimentally by Hor-
nung [22]. The �ve-species model is employed, but three species (O2, NO and O) are neglected
in order to perform this 2-species problem (N2 and N).
Owing to symmetry, only the upper half of the cylinder is analysed. Since this is a two-

dimensional problem, but the code solves 3D problems, only one element is used in the x3 di-
rection (	x3 = 0:005 m). The �nite element mesh is constituted of 1500 elements (50× 30×1
elements) with 3162 nodes and is shown in Figure 3(a).

x

y

M

T

8
8

Figure 2. Sketch of the nitrogen �ow over an half-cylinder.
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Figure 3. Finite element mesh (a) and Mach number contours (b).

The Mach number contours are shown in Figure 3(b). In Figures 4(a) and 4(b) the tem-
peratures and mass fraction distributions along the stagnation line, respectively, are shown.
The numerical result for the shock position obtained by the present work agrees with the
experimental result obtained by Hornung [22], as can be seen in Figure 4(a). The result for
perfect gas model fails to �nd the correct position of the shock. Furthermore, the temperature
for perfect gas model remains practically unchanged between the shock and the cylinder’s
surface, while for the model with high temperature e�ects, the temperatures distributions have
a maximum peak just after the shock and they continuously decrease towards the cylinder
surface. This e�ect is explained by the chemical reactions, since dissociation is endothermic.
In Figure 4(b), it is shown that the mass fraction distributions along the stagnation line are
less steep than the temperature ones. This phenomenon was expected, since chemical reactions
need a large number of collisions to occur.

4.2. Hypersonic �ow of air around a half-ellipse

Non-di�usive hypersonic �ow of air in thermal equilibrium around a half-ellipse travel-
ling at an altitude of 75 km is analysed, which can be schematically seen in Figure 5.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1355–1376



1370 M. P. KESSLER AND A. M. AWRUCH

x/R

T
,T

v
,

10
00

K

-2 -1.8 -1.6 -1.4 -1.2 -1
0

2

4

6

8

10

12

14

16

T
Tv
T (perfect gas)

Experimental
shock position
[Hornung, 1972]

x/R

M
as

s
F

ra
ct

io
n

-2 -1.8 -1.6 -1.4 -1.2 -1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N2
N

Experimental
shock position
[Hornung, 1972]

(a) (b)

Figure 4. Temperature (a) and mass fractions (b) distributions along the stagnation line.

Figure 5. Sketch of the air �ow over an half-ellipse.

The semi-axis of the ellipse are a=6:0 cm and b=1:5 cm. The free stream conditions
are: Mach number =25, velocity =7250 m=s, temperature=208:399 K, pressure=2:388 Pa,
density =3:991× 10−5 kg=m3, mass fraction of molecular nitrogen=0:767, mass fraction of
molecular oxygen=0:233, mass fraction of the other three species=0. This problem was
analysed by Argyris et al. [14, 16].
Owing to symmetry, only the upper half of the ellipse is analysed. Since this is also a two-

dimensional problem, only one element is used in x3 direction (	x3 = 0:005 m). The �nite
element mesh is constituted of 3600 elements (60× 60× 1 elements) with 7442 nodes and is
shown in Figure 6.
In Figures 7(a) and 7(b) are shown the Mach number and the temperature contours, re-

spectively. Figures 8(a), 8(b), 9(a) and 9(b) show the results obtained in the present work
and those obtained by Argyris et al. [14, 16] for temperature, pressure, mixture density and
mass fractions distributions along stagnation line, respectively. It can be seen that the results
of this work are in good agreement with those of Argyris et al. [14, 16].
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Figure 6. Finite element mesh for the ellipse problem.

(a) (b)

Figure 7. Mach number (a) and temperature (b) contours.
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Figure 8. Variation of temperature (a) and of pressure (b) along the stagnation line.
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Figure 9. Variation of density (a) and mass fractions (b) along the stagnation line.

4.3. Di�usive hypersonic �ow around an half-sphere

The di�usive hypersonic �ow of air partially dissociated around an half-sphere with 2 cm of
radius is analysed, which can be schematically seen in Figure 10. The free stream conditions
are: Mach number =11:16, velocity =5940 m=s, temperature=705 K, density =1:56× 10−3,
Re∞=1:14× 104, mass fractions of N2, O2, NO, N and O are, respectively, 0.762, 0.035,
0.032, 0 and 0.171.
To reduce the computational cost, only one-fourth of the half-sphere is analysed. The �nite

element mesh is constituted of 36771 nodes and 33 750 elements and is shown in Figure 11(a).
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Figure 10. Sketch of the air �ow around an half-sphere.
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Figure 11. Finite element mesh (a) and Mach number contours (b).

In Figure 11(b) is shown the Mach number contour. Translational and vibrational tempera-
tures contours are shown in Figures 12(a) and 12(b), respectively. In Figure 13(a) are shown
the Mach number, the translational and vibrational temperatures distributions along the stag-
nation line. In Figure 13(b) are shown the mass fractions distributions along the stagnation
line.

5. CONCLUSIONS

The numerical procedure proposed by the present work reproduces the experimental shock
position for the nitrogen �ow around a cylinder. In addition, the results obtained in the present
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Figure 12. Translational (a) and vibrational (b) temperatures contours (K).
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work for the problem of hypersonic �ow around an half-ellipse are in good agreement with
those obtained numerically by Argyris et al. [14, 16]. In all examples, the mass fractions of
chemical species usually take more time to respond to the shock than the other properties (e.g.
temperature). This phenomenon was expected since chemical reactions require a large number
of collisions to occur, which demands certain amount of time. The vibrational temperature
usually presents smaller values and respond a little later to the shock than the translational
temperature. This was also expected since the molecules become vibrationally excited only
above a speci�c temperature (typically, 800 K for air at 1 atm). Future works will include
adaptive meshes as well as ionization processes.
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